GCSE MARKING SCHEME

SUMMER 2019

PHYSICS COMPONENT 1 - HIGHER TIER C420UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE PHYSICS

COMPONENT 1 - Concepts in Physics

HIGHER TIER

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response question).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)			[Positively charged] nucleus (1) surrounded by [negatively charged] electrons (1) electrons in different orbits or energy levels or shells with the nuclear radius much smaller than that of the atom / almost all of the mass in the nucleus (1)	3			3		
	(b)		Any single digit number $\times 10^{-15}$	1			1			
			Question 1 total	4	0	0	4	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
2	(a)	(i)		Temperature is measured from the thermometer (1) Volume is measured from the syringe (1) Measure volume at different temperatures (1)	3			3		3
		(ii)	Temperature	1			1		1	
		(iii)	Mass of air / air pressure	1			1		1	
	(b)	(i)	Scales: t on x-axis including labels and units -0 to $50(2 \mathrm{~cm}$ per $10^{\circ} \mathrm{C}$ and V : either 0 to $60\left(2 \mathrm{~cm}\right.$ per $\left.10 \mathrm{~cm}^{3}\right)$ or 50 to $60(1 \mathrm{~cm}$ per $1 \mathrm{~cm}^{3}$) (1) All points plotted correctly (2) 5 points plotted correctly (1) 4 or less points plotted correctly (0) Straight line (1) Does not pass through origin so do not agree (1)			5	5	4	5	
		(ii)	As temperature increases the molecules gain energy / speed up (1) And their separation increases (1)	2			2			
			Question 2 total	7	0	5	12	4	10	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
3	(a)	(i)		$\begin{aligned} & \text { Substitution: KE }=0.5 \times 450000 \times 80^{2}(1) \\ & \mathrm{KE}=0.5 \times 450000 \times 6400(1) \\ & \quad=1440000000 \text { or } 1.44 \times 10^{9}[\mathrm{~J}](1) \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2	
		(ii)	$\begin{aligned} & \text { Work done }=\text { gain in KE (1) } \\ & \begin{aligned} & \text { Force }=\frac{1400000000}{950} \text { subs and manip (1) } \\ & \qquad=1515789 \text { or } 1.5 \times 10^{6}[\mathrm{~N}] \text { (1) } \end{aligned} \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
		(iii)	Drag force also acts [on aeroplane as it speeds up] (1) Thrust $=$ RF + drag so agree OR RF = Thrust - drag (1)			2	2			
	(b)	(i)	$\begin{aligned} \mathrm{PE} & =m g h \text { or by implication }(1) \\ & =450000 \times 10 \times 9200 \text { (subs and conv) (1) } \\ & =41400000000[\mathrm{~J}](1) \end{aligned}$ Answer of 41400000 gets (2) 4.14×10^{n} where n not equal to $10(2)$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
		(ii)	$\begin{aligned} & \text { Power }=\frac{\text { work done }}{\text { time }}(1) \text { or by implication } \\ &=\frac{41400000000}{1200} \text { ecf on numerator (subs and conv) (1) } \\ &=34500000[\mathrm{~W}](1) \\ & \text { Answer of } 2070000000 \text { (2) (20 min used) } \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
			Question 3 total	4	8	2	14	8	0	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
			3-4 marks Partially complete account which includes references to at least two of the sections. There is a line of reasoning which is partially coherent, supported by some evidence and with some structure. Mainly relevant information is included in the response but there may be some minor errors or the inclusion of some information not relevant to the argument. 1-2 marks Limited detail from any section. There is a basic line of reasoning which is not coherent, supported by limited evidence and with very little structure. There may be significant errors or the inclusion of information not relevant to the argument. 0 marks No attempt made or no response worthy of credit.						
(b)	(i)	$\begin{aligned} & { }_{43}^{99} \mathrm{Tc}(1) \\ & 56 \text { (ecf) (1) } \\ & 43 \text { (ecf) (1) } \end{aligned}$		3		3			
	(ii)	Gamma radiation is more penetrating (1) so there is less ionisation (of body cells) (1) The half-life of Tc is much less / smaller (1) so it decays more quickly (inside the body) / less exposure to radiation (over time) (1)			4	4			
		Question 5 total	6	3	4	13	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)		LDR has higher resistance in the dark (1) which is represented by line 2 \{since it is less steep or $\left.R=\frac{1}{\text { gradient }}\right\}(1)$		2		2		2
		(ii)	At greater values of I or V each component increases in temperature (1) This causes an increase in R of the lamp so line becomes less steep as in graph 2 OR this causes a decrease in R of the thermistor so line becomes steeper as in graph 1 (1)		2		2		2	
	(b)		Set variable resistor to its maximum/minimum value (1) Take readings of current/I/ammeter and voltage/ $/ /$ voltmeter (1) Vary value of variable resistor and repeat readings (1) Reverse polarity of power supply and repeat (1)	4			4		4	
			Question 8 total	4	4	0	8	0	8	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)		Use FLHR or description (1) Anticlockwise / accept arrow on diagram (1)	1	1		2		
		(ii)	Commutator/split ring (1) Reverses the current in the coil every time the coil passes through a perpendicular plane (1)	2			2			
	(b)	(i)	$\begin{aligned} & F=0.6 \times 1.2 \times 5(1) \\ & \times 10(1) \\ & \text { cao }=0.36 \mathrm{~N}(1) \text { includes conversion } \\ & \text { Zero force on } 3 \mathrm{~cm} \text { side }(1) \end{aligned}$		4		4	4		
		(ii)	$\begin{aligned} & \text { Moment }=F \times d(1) \text { recall } \\ &=(0.36 \text { ecf } \times 0.015)=0.0054(1) \\ & \text { Total moment }=2 \times 0.0054 \text { ecf }=0.0108 / 0.011[\mathrm{~N} \mathrm{m]}(1) \\ & \text { or } 0.36 \times 0.03(1) \text { subs and conv for middle mark } \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
		(iii)	As coil turns (perpendicular) distance between F and shaft changes or at some points the current and hence force is zero (1) so moment changes so disagree (1)			2	2			
		(iv)	Keep electrical power to motor and h the same (1) Calculate output power to lift W (1) $\text { Efficiency }=\frac{\text { power output }}{\text { power input }}(1)$			3	3		3	
			Question 9 total	4	7	5	16	6	3	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			$\begin{aligned} & \text { Initial momentum }=\text { final momentum (1) } \\ & \text { Momentum }=m v(1) \\ & \text { Increase in momentum of jockey }=50 \times 2=100[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1) \\ & \therefore \text { Decrease in momentum of horse }=100[\mathrm{~kg} \mathrm{~m} / \mathrm{s}] \\ & \therefore \text { Decrease in velocity }=\frac{100}{550}=0.18[\mathrm{~m} / \mathrm{s}](1) \\ & \therefore \text { New velocity of horse }=13.82[\mathrm{~m} / \mathrm{s}](1) \\ & \text { OR } \\ & \text { Momentum }=m v(1) \\ & \text { Initial momentum }=(550+50) \times 14=8400[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1) \\ & \text { Final momentum }=(550 \times v)+(50 \times 16)=8400[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1) \\ & \text { Final momentum of horse }=8400-800=7600 \\ & \text { Or } 550 v=8400-800[=7600](1) \\ & \text { so } v=\frac{7600}{550}=13.82[\mathrm{~m} / \mathrm{s}](1) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		5	3	
		Question 10 total	3	10	3	16	11	0	

HIGHER TIER

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	4	0	0	4	0	0
2	7	0	5	12	4	10
3	4	8	2	14	8	0
4	1	6	5	12	8	0
5	6	3	4	13	0	0
6	10	6	0	16	6	6
7	5	4	0	9	0	7
8	4	4	0	8	0	8
9	4	7	5	16	6	3
10	3	10	3	16	11	0
TOTAL	48	48	24	120	43	34

C420UA0-1 EDUQAS GCSE Physics - Component 1 HT MS S19/DM

